
Generating Benchmark Input “Data”: A Tutorial

Elliot Lockerman
∗

Introduction

When I’m writing a benchmark and need large amounts of data to grind through, there are times when I
don’t want to use zeros (because I need to be able to validate its output), and don’t want to use random
numbers (because I want to keep open the possibility of value prediction ruining my day). Back when I
wrote C++, I would have reached for std::iota(), an APL-themed function that fills an std::vector an
std::forward_iterator with sequentially increasing values. But I’ve been writing assembly lately, and
assembly doesn’t come with an iota() function. I guess there’s no alternative: I have to write some self
modifying code1.

Doesn’t sound too bad! Lets write this silly little iota() function.

The Silly Little iota() Function.

Here’s where our efforts begin:

// fn iota() -> u16

// Returns some number.

iota:

movz w0, #0xffff

ret

This (along with the rest of the assembly here) is AArch64 (aka arm64). Its a 64-bit RISC architecture with
32 registers (mostly general-purpose), and up to 8 arguments are passed in registers. Each instruction is 4
bytes, and must be so aligned2. My example targets Linux with no concessions to portability.

movz moves a 16-bit immediate into the destination register with zero-extension. Notice that in AArch64,
the destination register is on the left—in this case the 32-bit w0. movz also optionally supports shifting the
immediate, which we won’t need. This instruction, of course, will be the target of our modification: before
executing it, we’ll change the bits in the instruction representing the immediate.

Lets give it a try.

movz w1, #DEFINITELY_VALID_INSTRUCTION

adr x0, iota

str w1, [x0]

This puts an immediate in w1, adr gets a label’s (in this case, the movz’s) address in the 64-bit x0, and stores
w1 at the memory x0 points to.

aaaaaaand here we go!

∗All authors equally impeded this work.
1Ok, I guess there’s one alternative: I could keep the mutable state somewhere other than the text section. We’re obviously

not considering that possibility right now ˆ_ˆ
2Sooooo aligned.

$ make && ./iota

cc iota.S -o iota

Segmentation fault

Oh.

I guess this won’t be quite so easy.

The instruction we tried to write isn’t a problem, its definitely valid (ignore the part above where I said
instructions are 32-bit, but movz could only handle 16-bit values, its inconvenient for my narrative). This
must be that wˆx the greybeards down at the bar were going on about when I told them I was going to write
self-modifying code. How bad could it be?

w&x

> Have you ever felt like your computer was just a little too hard to pwn? Introducing w&x.

This is the part where we stop having fun and I urge you not to try this at home (and doubly so, work).
Its a bit of a security issue. Some JITs don’t even keep writeable and executable mappings in the same
process, much less at the same virtual addresses. This policy often written as wˆx: writable XOR executable3.
Certainly most modern operating systems don’t allow it—Linux may even be unique in that regard4.

So anyway, we’re going to do w&x.

This part’s kinda boring, we just call mprotect. If that was the only question you came in to this section
with, you probably want to skip to the next one, its not going to get any more interesting.

Lets start with some definitions:

PAGE_SIZE = 1 << 12

PAGE_MASK = PAGE_SIZE - 1

PROT_ALL = PROT_READ | PROT_WRITE | PROT_EXEC

Hopefully this is pretty self-explanatory. I’ll just mention hardcoding in the page size like this is Not Proper,
and just Is Not Done. Look, I said don’t copy me for this section.

Next, the actual function:

// fn make_writable(addr in x0: *const ())

// Make the page addr is on writable.

make_writable:

mov x2, #PROT_ALL // Arg 2: RWX permissions.

mov x1, #PAGE_SIZE // Arg 1: Size, one page in bytes.

bic x0, x0, #PAGE_MASK // Arg 0: Page of addr.

mov x8, #__NR_mprotect // Syscall number.

svc #0 // Do syscall.

// Check mprotect return code.

cbnz x0, 1f

// Success path: just return.

ret

1: // Error path: print message and exit.

mov x1, x0 // Arg 1: mprotect error code.

3Probably because the more accurate (int)writable + (int)executable <= 1 is a bit of a mouthful.
4I already mentioned no concessions to portability, right?

adr x0, 2f // Arg 0: Format string.

bl printf

mov x0, #1 // Arg 0: Exit code 1.

bl exit

2:

.asciz "mprotect error: %d\n"

It takes a pointer, and makes everything on that page writable. This is another wrong way to go about
things—not so much with the function itself, but how I end up using it. That, of course, happens elsewhere,
but I might forget to bring it up if I put it off until then, so lets talk about it here. Calling this on a random
pointer has two risks: it might make too much writable, and it might not make enough writable. As for the
second problem, we only care about a single instruction; thanks to the alignment requirement, it will entirely
be on one page, so we’re good there. As to the first problem, its a risk. The right way to do this is to mmap

new pages that have nothing else on them.

Anyway, stepping through the assembly, it sets the arguments to mprotect (using bic (bit clear) to clear
the log2(PAGE_SIZE) lower-order bits of addr so it points to the page start). It then makes the mprotect

syscall with svc (supervisor call) and checks the return value in x0 with cbnz (compare and branch if not
zero). If there is no error, it falls through and returns, but if x0 is nonzero, it jumps to the error handling
path. Note the numeric label 1: and the jump 1f. These are non-unique labels; a reference to numeric label
n: with nf resolves to the closest forward label n:, and nb resolves to the closest backwards label n:.

The error path simply prints a message with the error code by calling printf with bl (branch and link). It
then exits with a nonzero code.

Assuming all went well with mprotect, we can now modify some code! We should get on that.

The Fun Part

This is going to mostly be bitwise operations, so we’ll need some constants. Luckily, I prepared some earlier:

IMM_WIDTH = 16

IMM_SHIFT = 5

IMM_MASK = ((1 << IMM_WIDTH) - 1) << IMM_SHIFT

Actually, scratch that, its too soon. Let’s quickly peek at the format of movz first:

31 23 21 5 0

v v v v v

_ ________ __ ________________ _____

|_|________|__|________________|_____|

sf opc hw imm16 rd

Recall that movz moves a 16 bit immediate in to a register with optional shifting, zeroing other bits. Here
are it’s fields with bit indices given in half-open intervals.

• sf: (bits 31:32): the 32-/64-bit selection field. We can ignore it.
• opc: (bits 23:31): the opcode, which we can ignore.
• hw: (bits 21:23): used for shifting; we can ignore it.
• imm16 (bits 5:21): the immediate. We can’t ignore it.
• rd (bits 0:5): the destination register. We can ignore it.

Luckily, most of our work involves ignoring things! That does make it easier, though its all the more important
to get that imm16 field right. Good thing those constants should be just about ready by now:

IMM_WIDTH = 16

IMM_SHIFT = 5

IMM_MASK = ((1 << IMM_WIDTH) - 1) << IMM_SHIFT

Hopefully some of these numbers now look familiar: these are the width, position (shift), and a mask of the
imm16 field in a movz instruction. With them, we can extract the old immediate, increment it (clearing the
upper bits afterwards), clear the field in the instruction, shift the new value in to position, and OR it in:

// fn movz_incr_imm(ins in x0: &mut u32)

// Increment the immediate field in the movz instruction at ins.

movz_incr_imm:

ldr w2, [x0] // Load movz.

bfxil w1, w2, #IMM_SHIFT, #IMM_WIDTH // Extract the old immediate.

add w1, w1, #1 // Increment

uxth w1, w1 // Clear upper bits (in case it overflowed).

lsl w1, w1, #IMM_SHIFT // Shift in to position.

bic w2, w2, #IMM_MASK // Clear the old immediate from the instruction.

orr w2, w2, w1 // OR or the new one into the instruction.

str w2, [x0] // Store movz.

ret

bfxil is a fancy instruction that does an entire subword extraction, shifting the value down and clearing
higher bits; similarly, uxth clears all but the bottom 16 bits.

Phew, that was a lot, but I’m sure it’ll work now.

It Won’t Work Now

Howard Aiken decided he didn’t want us doing exactly what we’re doing here, and invented what came to be
known as the Harvard Architecture. Now, to break his curse, we need a suitable incantation to return us to
von-Neumann land.

More seriously, modern computers have caches, and the first-level cache is split between instruction fetches
(L1i) and all other accesses (L1d). Our write to the movz instruction is serviced by the data cache, and on
this architecture, there’s no mechanism to automatically keep the two in sync (they’re not coherent). We
can’t even just evict the line from the L1i and move on—we run afoul of all of the other mechanisms in a
modern CPU that keep it chugging along at a brisk pace.

Here’s what we actually need to do:

// fn evict_ins(addr in x0: *const ())

// Evict addr from the l1i cache.

evict_ins:

ic ivau, x0 // Evict virtual address x0 from instruction cache.

dc cvau, x0 // Evict virtual address x0 from data cache.

dsb nsh // Wait for previous evictions to complete.

isb // Flush pipeline.

ret

ic ivau, x0 (“Instruction Cache Invalidate by Virtual Address to Point of Unification”5) evicts the line x0

points to from the L1i, just like we talked about.

dc cvau, x0 (“Data Cache Clean by Virtual Address to Point of Unification”6) evicts the line x0 points to

5The “Point of Unification” here refers the L2, rather than the assumed RISC-oriented spiritual retreat (which refuses to give
me a refund).

6Using ARM’s terminology, we’ve chosen to clean rather than invalidate from the data cache because we have dirty data we
wish to be written back, but we only have the option of invalidating from the instruction cache, because it can’t be dirty. These

from the L1d. We need to do this because the L1d is write-back—a write to the L1d doesn’t update the L2
until its evicted from the L1d, so a future L1i miss would otherwise still receive stale data from the L2.

These instructions are non-blocking; on our highly-speculative out-of-order core, if we just continued, we could
execute a future instruction before they finished. dsb nsh is a barrier that blocks execution until all previous
memory operations (including our two evictions) complete. nsh specifies that we only need operations to
have completed to the Point of Unification, since we don’t care about our change being visible to other cores
or devices on the bus7.

dsh nsh prevented future instructions from executing too early, but they still may have been fetched too
early. We therefore need isb to flush the pipeline.

We’re now finally ready to modify our function!

Modifying iota() For The Last Time (Statically, That Is)

Of course, we don’t want to have to manually make a bunch of calls every time we want a new number!
Lets have iota() call movz_incr_imm() and evict_ins() itself. This’ll be our first non-leaf function, which
means we’ll have to deal with (spooky voice) THE STACK.

Its really not so bad, we just need to add a prologue and epilogue. When we get called, we have to deal with
the parent’s frame pointer (fp), and our return address in the link register (lr). We save the pair of them to
the stack with stp (store pair), using [sp, #-16]! to pre-decrement the stack pointer (sp) 16 bytes. Its
really just a fancy “vector” push! We then set up a new stack frame by setting the frame pointer to sp; we
don’t need the stack space here, but its good practice since fp is used by debuggers to get a stack trace.
Before returning, we do the reverse (with [sp], #16 being a post-increment).

Here’s what iota() looks like with the stack manipulation and our new calls:

// fn iota() -> u16

// Returns some number.

iota:

// Make stack frame

stp fp, lr, [sp, #-16]!

mov fp, sp

adr x0, iota_movz // Arg 0: Address of movz instruction.

bl movz_incr_imm // Call movz_incr_imm().

adr x0, iota_movz // Arg 0: Address of movz instruction.

bl evict_ins // Call evict_ins().

iota_movz:

movz w0, #0xffff

// Clean up stack frame and return.

mov sp, fp

ldp fp, lr, [sp], #16

ret

iota_movz now labels the movz instruction so we can easily get its address with adr before calling
movz_incr_imm and evict_ins.

are but a few of the vast menagerie of variants of these instructions ARM offers. It sounds confusing, but is still probably better
than e.g., executing an L1i’s worth of nops to flush the instruction cache, which was actually done on early MIPS R2000s.

7You weren’t going to modify code shared between threads, right?

https://www.yarchive.net/comp/self_modify.html

Calling iota()

Wow, dozens of lines in, and so far we’ve only written a bunch of random functions. Its time we had a main()

course8.

// fn main() -> u32

main:

// Set up stack frame.

stp fp, lr, [sp, #-16]!

mov fp, sp

sub sp, sp, #16

str x19, [sp]

// Make the page iota() is on writable. Danger!

adr x0, iota_movz // Arg 0: Address of movz in iota.

bl make_writable

// Initialize induction variable: 10 iterations.

mov x19, #10

1:

// Call iota (pretending there hasn't been any funny business).

bl iota

// Print iota()'s return value.

mov w1, w0 // Arg 1: iota()'s return value.

adr x0, 2f // Arg 0: Format string.

bl printf

// Decrement induction variable and loop if not 0.

sub x19, x19, #1

cbnz x19, 1b

// Tear down stack frame and return.

ldr x19, [sp]

mov sp, fp

ldp fp, lr, [sp], #16

mov x0, #0 // 0 return code

ret

2:

.asciz "%hu\n"

The stack frame is similar to the one we made for iota(), but this time we decrement sp some more so
we can save x19; its callee save, and we’re going to need it9. The epilogue just reverses the effects of the
prologue, then sets x0 with 0 for the return code. After the prologue, we call make_writable on iota_movz,
and initialize our induction variable in x19.

Now we can call iota() until we get bored10, and get a new value each time11!

8Yes, main(). I’m linking the cstdlib. Its just for printf(), stop making such a big deal out of it.
9Why decrement sp by 16 bytes to save an 8-byte register? AArch64 requires the stack to be 16-byte aligned, and does

hardware enforcement. And not just at function call boundaries, at every stack access. You essentially can’t push and pop
scalars, a feature I presume was added just to spite me.

1010 times.
11New values not guaranteed if called 2

16 or more times.

We just assemble, aaaaaaaaaand. . .

$ make && ./iota

cc iota.S -o iota

0

1

2

3

4

5

6

7

8

9

. . . its finally done.

Appendix A: Full Code Listing

#include "/usr/include/aarch64-linux-gnu/sys/syscall.h"
#include "/usr/include/asm-generic/mman-common.h"

.globl main

.text

.align 2

// fn iota() -> u16
// Returns some number.
iota:

 // Set up stack frame
 stp fp, lr, [sp, #-16]!
 mov fp, sp

 adr x0, iota_movz // Arg 0: Address of movz instruction.
 bl movz_incr_imm // Call movz_incr_imm().

 adr x0, iota_movz // Arg 0: Address of movz instruction.
 bl evict_ins // Call evict_ins().

iota_movz: // Just to get the address of movz, not for branching.
 movz w0, #0xffff

 // Clean up stack frame and return.
 mov sp, fp
 ldp fp, lr, [sp], #16
 ret

PAGE_SIZE = 1 << 12
PAGE_MASK = PAGE_SIZE - 1

PROT_ALL = PROT_READ | PROT_WRITE | PROT_EXEC

// fn make_writable(addr in x0: *const ())
// Make the page addr is on writable.
make_writable:

 mov x2, #PROT_ALL // Arg 2: RWX permissions.
 mov x1, #PAGE_SIZE // Arg 1: Size, one page in bytes.
 bic x0, x0, #PAGE_MASK // Arg 0: Page of addr.
 mov x8, #__NR_mprotect // Syscall number.
 svc #0 // Do syscall.

 // Check mprotect return code.
 cbnz x0, 1f

 // Sucess path: just return.
 ret

1: // Error path: print message and exit.
 mov x1, x0 // Arg 1: mprotect error code.
 adr x0, 2f // Arg 0: Format string.
 bl printf

 mov x0, #1 // Arg 0: Exit code 1.
 bl exit

2:

 .asciz "mprotect error: %d\n"

.align 2

IMM_WIDTH = 16
IMM_SHIFT = 5
IMM_MASK = ((1 << IMM_WIDTH) - 1) << IMM_SHIFT

// fn movz_incr_imm(ins in x0: &mut u32)
// Increment the immediate field in the movz instruction at ins.
movz_incr_imm:

 ldr w2, [x0] // Load movz.
 bfxil w1, w2, #IMM_SHIFT, #IMM_WIDTH // Extract the old immediate.
 add w1, w1, #1 // Increment.
 uxth w1, w1 // Clear upper bits (in case it overflowed).
 lsl w1, w1, #IMM_SHIFT // Shift in to position.
 bic w2, w2, #IMM_MASK // Clear the old immediate from the instruction.
 orr w2, w2, w1 // OR or the new one into the instruction.
 str w2, [x0] // Store movz.
 ret

// fn evict_ins(addr in x0: *const ())
// Evict addr from the l1i cache.
evict_ins:

 ic ivau, x0 // Evict virtual address x0 from instruction cache.
 dc cvau, x0 // Evict virtual address x0 from data cache.
 dsb nsh // Wait for previous evictions to complete.
 isb // Flush pipeline.
 ret

// fn main() -> u32
main:

 // Set up stack frame.
 stp fp, lr, [sp, #-16]!
 mov fp, sp
 sub sp, sp, #16
 str x19, [sp]

 // Make the page iota() is on writable. Danger!
 adr x0, iota_movz // Arg 0: Address of movz in iota.
 bl make_writable

 // Initialize induction variable: 10 iterations.
 mov x19, #10

1:

 // Call iota (pretending there hasn’t been any funny business).
 bl iota

 // Print iota()’s return value.
 mov w1, w0 // Arg 1: iota()’s return value.
 adr x0, 2f // Arg 0: Format string.
 bl printf

 // Decrement induction variable and loop if not 0.
 sub x19, x19, #1
 cbnz x19, 1b

 // Tear down stack frame and return.
 ldr x19, [sp]
 mov sp, fp
 ldp fp, lr, [sp], #16
 mov x0, #0 // 0 return code
 ret

2: .asciz "%hu\n"

	Introduction
	The Silly Little iota() Function.
	w&x
	The Fun Part
	It Won’t Work Now
	Modifying iota() For The Last Time (Statically, That Is)
	Calling iota()

